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On an integral equation of viscous flow theory 
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SUMMARY 
The integral equation encountered by van de Vooren and Veldman [1] in their study of the Knudsen region 
near the leading edge of a flat plate is solved by the method of Wiener and Hopf. This exact solution yields 
the values of certain arbitrary constants which were not determined in [ll. 

1. Introduction 

In a recent investigation of the incompressible viscous flow near the leading edge of a flat 
plate van de Vooren and Veldman [1] found that, when the Knudsen number ~c is small, 
the solution in the immediate neighbourhood of the leading edge depends on that of the 
integral equation 

X 
~ 

f ix) = (2~z) -1 log [x - xa]f(xt)dx 1 + x --~. 
0 

(1.1) 

The function f(x) is related to the slip velocity on the plate. As a complement to their 
solutions of the complete Navier-Stokes equations for various values of K the authors 
presented a numerical solution of (1.1). In addition they found the analytic form of the 
asymptotic expansions off(x)  to be 

_ cl 7~Lc~ _ xg(log x) z f ( x ) = x  ~ + c  1 + ~ - x  x l o g x + c 2 x +  lr~rc2 

and 

~--~( e--~z)x21ogx+ c3xZ + . as x ~ O ,  

f(x) x-~{ 1 l~ C 1 =  rc X + x 2re 23 ( l o ~ x f  1 ( _ _  +--re 3Ca + - 2 )  I~ 2 

C2 } 
-'{--~--q-... , as x-+ oo. 

(1.2) 

(1.3) 

Here ci, Ci are constants which they were unable to determine except by comparison with 
the numerical solution which gives -1.265 as an estimate for c a. The importance of cl 
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lies in the fact that it determines the slip velocity u at the leading edge which is given by 

u Ate ff 
- - -  l i m  { x  - }  - f ( x ) } .  ( 1 . 4 )  

U 2 x-~o 

Here U is the mainstream velocity and A ( =  0.755) is a known constant determined by 
the solution valid away from the immediate neighbourhood of the leading edge. 

In the following we present an exact solution of (1.1)'obtained by the method of Wiener 
and Hope  The asymptotic expansions for small and large x of this solution confirm the 
form of (1.2), (1.3) and in addition yield the values of the unknown constants. We find 
those which appear explicitly in (1.2), (1.3); in particular the value of cl is 

c ,  = - ( t . 5 )  

The estimate ca = - 1.265, obtained in [1] agrees well with this exact value (c 1 = - 1.2533). 

2 .  T h e  i n t e g r a l  e q u a t i o n  

In order to be able to employ complex variable methods we extend (1.1) to negative values 

of x and x 1 by writing it as 

f(x) = (21t) -1 loglx - x, l f(x,)dx 1 + re(x) + h(x) (2.1) 
- - o 0  

where 

and 

f(x) = O, m(x) = O, x < O, (2.2) 

h(x)=O, m ( x ) = x  -~, x > 0 .  (2.3) 

If  the Fourier transform off(x) ,  for example, is denoted by F(co) so that 

F(CO) = (2~) -~ ei~ (2.4) 
- - G O  

a Fourier transform of (2.1) yields 

F(co) = v(co)F(co) + M(co) + H(co). (2.5) 

Here F(co), M(co) are regular in the upper half-plane im co > 0, and H(co) is regular in 
the lower half-plane im co < 0. The function (2re) ~ V(co) is the transform of log x which 
is given by, on introduction of a suitable convergence factor, 

2~V(co)=fo(l~ l~ 
�9 log (co - i~) + �89 + 7 . log (co + ig) - �89 + 7 

= t - t (2.6) 
co - i8 co + i8 
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Here 7 is Euler 's  constant,  and the parameter  e will be allowed to tend to zero in conclusion. 

The corresponding expression for  M(co) is 

(2r0�89 = x-+e~~ - ~z~ei~/4(co -I- ie) -~. (2.7) 
0 

The branches o f  the square root  in (2.7) and of  the logarithms in (2.6) are selected so that 

log(co + ie) = loglco + iel + iarg(co + ie), 

where we define 

(2.8) 

3re ~z rc 3re 
. . . .  < arg(co + ie) < - -  (2.9) < arg (co - i~) < ~- ,  2 2 ' 2 = = 

and consider the co-plane to be cut f rom ie to ioo and f rom - i~ to - ioo along the imaginary 

axis. Equat ion (2.5) is now written as 

F(co){1 - V(co)} = M(co) + H(co) (2.10) 

and this constitutes a W i e n e r - H o p f  problem for the unknown functions F(co), H(co). To 

determine these functions we first make the assumption, which may be justified a poste- 
riori, that  the domain  o f  regularity of  H(co) extends to im co < ~. Then (2.10) may be 

written 

F+(co){1 - V(co)} = M+(co) + H_(co) (2.11) 

where a plus sign indicates that  a function is regular for im co > 0 a n d  a minus sign for 

im co < ~. It  emerges that, except for F+(co), all functions with the subscript + are in fact 
regular for im co > - ~ .  

The procedure is now as follows. It  will be shown in the following section that  1 - V(co) 

has zeroes at co = ___ Wo where coo is real. Because of  this we define 

Q(co) = {1 - V(co)}/(co 2 - COo2), (2.12) 

and factorise Q(w) into the form 

Q(co) = Q +(co)/Q_(co), (2.13) 

where Q+(co) is regular and non-zero for im co > - e  and Q_(co) is regular and non-zero 

for  im co < e. We then decompose the produc t  Q_(co)M+(co) so that  

Q _ (co)M + (co)/(co - i~) --- L + (co) - L_ (co). (2.14) 

The reason for the introduct ion o f  the factor  co - iz will be evident later. Equat ion ( 2 . 1 1 )  

may then be arranged as 

(coz _ co0Z)F+(co)Q+(co) _ (co _ ie)L+(co) = H_(co)O_(co) - (co - ie)L_(co), (2.14) 

where the left-hand side represents a funct ion regular for  im co > 0, and the r ight-hand 
side represents a funct ion regular for im co < e. Since they are equal on a dense set o f  
points, by  analytic cont inuat ion together they define a function E(co) which is regular in 
the whole co-plane. In  Sections 3, 4 we find that  Q+(co) ,-, o) -1,  L+(co) ,,~ e~/4/(2co) ~ for  

large Ico[. N o w  as noted in [I] the first term in the asymptot ic  expansion o f f ( x )  as x ~ 0 
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must be x - ~ ;  thus E(09) is a constant,  Eo say, so that  F+(09) ~ ei~I4/(209) ~ for  large I091. 
Also in Sections 3, 4 we find that  Q+(09) ,,~ 2 - ~ e  *~/4 09-~, rcL+(09) ~ - log 09 as 09 ~ 0, so 

that  F+(09) ,,~ Eo2~e -~/~ 09-~- as 09 ~ 0. Unless Eo = 0 this implies that  f (x )  = O(x -~) 
as x -~ az which is incorrect, either f rom [1] or  as may be deduced on examination o f  (1.1). 

It  therefore follows that  each side of  (2.15) is zero and hence that  

(09 - i O L +  (09) 
F+(09) = (092 _ 09o2)Q+(09) " (2.16) 

The solution may then be completed by inverting the Fourier  t ransforms and taking the 

limit as ~ -~ 0. 

3. The decomposition of the function Q(09) 

The function Q defined in (2.12) is a one-valued function o f  the complex variable 09 in the 

plane cut in accord with the definitions (2.9). It  is easy to show that  1 - V(09) has no 

zeroes when I091 = o ( 1 )  but it emerges that  it has two zeroes on the real axis with [09[ = 

= 0(8 log e) as e ~ 0. This may  be seen as follows. When 09 is real and positive we have 

f rom (2.6) that 

2zc{1 - V(09)} = 2~ + {2~7 + ~09 + e Iog(09 z + ~2) _ 209 tan -1 (e/09)}/(09 2 + e2). (3.1) 

When I091 >> 1 the r ight-hand side is positive since 27c is the dominant  term. However  

when 1091 "~ e the r ight-hand side is dominated by a term (log ~2)/~ which is negative. 

Thus the expression has a zero which is found to be at ~o = 090 where 

090 " - -  log as e ~ 0. (3.2) 

Similarly it may  be shown that 1 - V(09) also has a zero at -09o. 

The function Q(09) is then regular and also non-zero in the strip - e  < im 09 < e. To 

effect its decomposi t ion we consider Q'(09)/Q(09) which is regular in the strip and also 

tends to zero as re 09 ~ + oe with - e  < im 09 < e. We may therefore write 

Q'(09)/Q(09) = Q'+ (09)/Q + (09) - Q'_ (09)/Q_ (09) = R + (09) - R_ (09), (3.3) 

where 

1 I ~176 Q'(z) 
:R+(09) = 5~i  j _ ~ + ~  Q(z) 

f o r - e < e < i m 0 9 < d < e .  

dz 

z - 0 9  

1 I ~176 Q'(z) dz 
, R_(09)----~-t.d_~+~a Q(z) z -  09 (3.4) 

For  the evaluation o f  R+(~o) we first perform a partial integration yielding 

1 f~~ logQ(z) R+(09) = az, (3.5) 

and then replace the path o f  integration indicated in (3.4) by the infinite semi-circle below 
the real axis, the two sides o f  the cut f rom - i e  to - i o o  and a small circle surrounding 
the point z = - i e .  Only the cut gives a contr ibution to R+(o0.  Since the result will be 
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required only in the limit e -~ 0 we present it af ter  mak ing  the limiting process. The  reten- 

t ion of  s so that  R+(co) is writ ten as a funct ion of  co + is serves merely as a reminder  that  
R+(to) is regular for  im co > - s .  The  result is 

3 2i 
R+(co) = + 

2(w + is) ~{1 - 4(co + ie) 2} 

x {log(w + is) + log 2 - �89 + i~z(co + i0}. (3.6) 

Similarly we evaluate R_(co) by replacing the pa th  of  integrat ion by a contour  above  the 

real axis and  obtain  finally 

3 2i 
R _ ( ~ )  - + 

2(co - i 0 7t{l - 4(o3 -- is) z} 

x {log(co - is) + log 2 + �89 - i~z(co - i0}. (3.7) 

The  functions Q+(co), Q_(co) may  now be obta ined f rom (3.6), (3.7) by integrat ion and  we 
choose the arbi t rary  multiplicative constant  so that  

Q+(co) ,,- (co + is) -~,  Q_(co) ~ co - is (3.8) 

for  Icol large. We shall find in part icular  that  we require the values of  Q _ ( - i t ) ,  Q+(it) 
where t is real and positive. These are quite easily found to be 

Q _ ( - i t ) =  (1 + 4 t 2 )  § e x p L  Jo ~ -  1 + 4 ~  2 J Q+(it) (3.9) 

The  two propert ies of  Q+(co) which were quoted in Section 2 to deduce that  the two sides 
of  equat ion (2.15) were zero are now evident. The  first, that  Q+(co) ~ o~ -1 as co ~ ~ ,  
is given in (3.8), and  the second, that  Q+(co) ~ 2-~-e ~/4 co-~ as o ~ 0, follows either 

directly on integrat ion of  (3,6) or f rom (3.9) on replacing it by co with the appropr ia te  
value of  re/2 for  arg co. 

4. The decomposit ion of  Q_ (to) M +  (to)/(to - is) 

As stated in Section 2 the funct ion Q_(co)M+(co)/(co - is) is to be decomposed  in the fo rm 
(2.14). The  factor  co - is is inserted to ensure that  the funct ion tends to zero as re co ~ + oo, 
Formulae  analogous to (3.4) lead to 

1 f o  " Q _ ( - i t ) d t  
L+(to) = - ~zi-  2 " t ~ C / - (  ~ i 0 } '  (4.1) 

lfo 2~t~Q+(it)dt L_ (o9) - - , (4,2) 
zu (1 + 4tz){t + i(co - ie)} 

where Q _ ( - i t ) ,  Q+(it) are given by (3.9). Again the limiting process e ---, 0 has been made  
except where it serves as a reminder  of  the domain  of  analytici ty of  L+(co), L_(co). 

The  two propert ies  of  L+ (m) used following (2.15) in Section 2 are now available. When  
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t >> 1 we have from (3.9) that Q _ ( - i t )  ~ - i t ,  and it then follows from (4.1) that 

1 /,oo dp e ~/4 
L+(co) ,-~ rc(2co)* J o  ~ - -  - p-~(p - i) (2co)~ as co ~ oo. (4.3) 

However when t ~ 1 we see that Q _ ( - i t )  ,,~ - i 2 ~ t  ~ with the result that 

L+(co) ,-~ ( -  log co)/n as co ~ O. (4.4) 

5. Calculation o f f (x )  

We may now return to (2.16) and invert the Fourier transform to obtainf(x).  The functions 
L+(co), Q+(co) are regular, and Q+(co) is non-zero, for im o9 > -5 .  However the presence 
of the factor co2 _ co2 in the numerator of (2.16) means that F+(co) is regular only for 
im co > 0. The inversion formula therefore gives 

f ~-oo (co -- is)L+(co) _UO~dco (2n)~f(x) = (co2 ~ ~ )  e (5.1) 

where the path of integration must be taken above the poles of the integrand on the real 
axis at co = +co o. However as shown in Section 3, 4 we have that Q+(co) = o(co-~), 
L+(co) = O(log co) as co ~ 0, from which it follows that the residues at these poles are 
both O(cog log coo), and therefore tend to zero in the limit 5 ~ 0 since coo = 0(5 log 8). 

We replace the contour of integration in (5.1) by the infinite semi-circle below the real 
axis together with the two sides of the cut from - i 5  to - i ~  along the imaginary axis. 
To simplify the form of the integrand on the sides of the cut we replace it by, on use of  
(2.12), (2.14), 

+ M+(co) 1 _ v(co) (5.2) 

which enables us to exploit the analyticity of L_ (co), Q_(co) in the lower half-plane. As 
explained above, we may ignore the residues at the two poles at co = + coo within the 
contour. The result, on using (3.9), (4.2) and finally letting 5 ~ 0, is 

f o l  s em(S) Io  em(t) d___~l 
(2n)~f(x) = 1 + s 2 n(1 + s2) ~ (1 + t2) ~ t s s~e-S~/2ds (5.3) 

where 

1 ~t log2 
m(t) = Jo 2~ d2. (5.4) 

n 1 +  

It is shown in the Appendix that 

~o em(O dt _ n {1 e-"(s) "[ 
(1 + t2) § t + s s (i +~-)+J' (5.5) 
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so that  (5.3) may be written 

1 1 _(; e ~(~) --sx]2 ds 
f(x) = x~ (2zc)~ . -  s_~( 1 + sa)~ e . (5.6) 

It is fairly easy to verify, by the methods outlined in the Appendix for the evaluation of 
the integral in (5.5), that  f (x)  does indeed satisfy (1.1). 

6. The expansion o f f (x )  for large x 

The asymptotic expansion o f f ( x )  for large x follows easily from (5.6). To obtain this we 
need the expansion of the integrand for small s which is, on use of  (5.4), 

e re(s) { S �89 2 1 
s~(1 +s2)§  = s  -~ i + - - ( 1  - - l o g s ) +  (1 - - l o g s )  2 - � 8 8  2 + O((slogs) 3) ~r --~-- 

(6.1) 

Term by term evaluation of  (5.6) then leads to the expansion (1.3) as predicted in [1] with 

C1 = (1 - log 2 - y)/n, (6.2a) 

3 
Cz = ~ {(log 2) 2 - 2(7 + �89 log 2 - ~2 + jxQV + ~_ + re2). (6.2b) 

7. The expansion o f f (x )  for small x 

The value of  the constant  c I in (1.2) follows immediately f rom (5.6). It is 

et = lim {f(x) - x -~} = 1 fo  ~ e re(s) 
:,-.o - (2z0 ~ (i + s2) ~ ds (7.1) 

since, f rom (5.4), 

m(s) = m(s- t). (7.2) 

It is shown in the Appendix that  

f ~ era(s) 
(1 + Sz) ~ ds = z (7.3) 

where the integrals required in the calculation of  c2, c3 are also evaluated. These are 

f f  e" (s )  dS-l' "~f~o em(s) ds _ 1 5~z , (7.4) 
~- (1 + s 2 )  �88 s (1 + s 2 )  ~ s z 2rc 12 

where ~ denotes the finite part  of the infinite integral. 
The asymptotic expansion of (5.6) as x ~ 0 is found to be as predicted in [1]. It is (1.2) 

with 

et = - ~ ]  , e2 = 2-~'zc-~(log 2 - y + 2), (7.5a) 

! a 

e3 = 1 ~  {(log 2) 2 + (5 - 27) log 2 + 72 - 57 + ~ - ~7r2}. (7.5b) 
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Appendix 

We now evaluate the integrals of (5.5), (7.3), (7.4). If  we extend the definition of m(t) in 
(5.4) to complex values of a variable z say, and define 0 < arg z < 2~, we find that near 
z = i, e -~(~) N 2-+(z - i) ~ so that e-~(z)/(1 + z2) + is regular at z = i. Also when t is 

real and positive 

1 - i t  
e -  " ( -  t) _ era(t). (A. 1) 

(1 + t2) 9 

To evaluate the integral of (5.5) with 0 < s < oo we consider the function 

e - r e ( z )  

z(1 + z2)+(z - s) (A.2) 

which is regular for iln z > 0 in the plane cut along the positive real axis, and has simple 
poles at z = 0, s. The integral of this function around the contour consisting of the infinite 
semi-circle in the upper half-plane and the real axis indented at z = 0, s is zero. Thus 

l i m I [  ~176 - e"(')t2) ~" 1- i t s )  dt + ~ f ;  e -m't, dt rci z ie-m(s)~ 
~-,ot.,J~ ( 1 +  f i t+  (1 + t 2 )  ~ t(t - s) + s s-~-T~5~�88 j 0 

(A.3) 

where N denotes the Cauchy principal value of the integral at t = s, and 6 is the radius 
of the semi-circle about the origin. The imaginary part of (A.3) gives the result (5.5). 

To evaluate the integral of (7.3) we consider the function 

- m ( z )  e 
z(1 + zZ) ~- (A.4) 

around the same contour apart from the indentation at z = s. The imaginary part of the 
expression analogous to (A.3) leads to the required result. For the integrals of (7.4) we 

consider 
e-re(z) e-re(z) 

Z2(1 -t- z2) + '  z3(1 + za)§ (A.5) 

around the contour and select the imaginary parts of the finite parts of the integrals around 
the semi-circle radius 6 about the origin. Both results follow immediately. 
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